Perfect matchings after vertex deletions
نویسندگان
چکیده
This paper considers some classes of graphs which are easily seen to have many perfect matchings. Such graphs can be considered robust with respect to the property of having a perfect matching if under vertex deletions (with some mild restrictions), the resulting subgraph continues to have a perfect matching. It is clear that you can destroy the property of having a perfect matching by deleting an odd number of vertices, by upsetting a bipartition or by deleting enough vertices to create an odd component. One class of graphs we consider is the m × m lattice graph (or grid graph) for m even. Matchings in such grid graphs correspond to coverings of an m × m checkerboard by dominoes. If in addition to the easy conditions above, we require that the deleted vertices be (√ m) apart, the resulting graph has a perfect matching. The second class of graphs we consider is a k-fold product graph consisting of k copies of a given graph G with the ith copy joined to the i + 1st copy by a perfect matching joining copies of the same vertex. We show that, apart from some easy restrictions, we can delete any vertices from the kth copy of G and find a perfect matching in the product graph with k suitably large.
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملGraphical condensation of plane graphs: A combinatorial approach
The method of graphical vertex-condensation for enumerating perfect matchings of plane bipartite graph was found by Propp (Theoret. Comput. Sci. 303(2003), 267-301), and was generalized by Kuo (Theoret. Comput. Sci. 319 (2004), 29-57) and Yan and Zhang (J. Combin. Theory Ser. A, 110(2005), 113125). In this paper, by a purely combinatorial method some explicit identities on graphical vertex-cond...
متن کاملA New Lower Bound on the Number of Perfect Matchings in Cubic Graphs
We prove that every n-vertex cubic bridgeless graph has at least n/2 perfect matchings and give a list of all 17 such graphs that have less than n/2 + 2 perfect matchings.
متن کاملMatching graphs of Hypercubes and Complete Bipartite Graphs
Kreweras’ conjecture [1] asserts that every perfect matching of the hypercube Qd can be extended to a Hamiltonian cycle. We [2] proved this conjecture but here we present a simplified proof. The matching graph M(G) of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007